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Strong subadditivity is used to improve the triangular inequality for the entropy
of tensorproducts by the amount of entanglement.
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1. INTRODUCTION

Classically the entropy of a discrete system exceeds the entropy of any of is
parts but in quantum theory this need not be the case. If a system is split
into a part A and a rest B such that the observables belong to A éB then
generally we have for the entropy of the total system the following
bounds: (1, 2, 5)

Classically:

max{S(A), S(B)} [ S(A éB) [ S(A)+S(B) (1)

quantum:

|S(A)−S(B)| [ S(A éB) [ S(A)+S(B). (2)

Thus in quantum theory a state w over A éB may contain correlations
which are masked in w|A and w|B. In this paper we want to show that the
triangular inequality does not give justice to these quantum correlations.
We will demonstrate that it can be improved by using the so called entan-
glement of formation E. The mathematical expression appeared previously



in other contexts, (6, 7) though the relation to entanglement was first given in
ref. 8. This improvement reeds

|S(A)−S(B)| [max{S(A), S(B)}−E [ S(A éB). (3)

Further we will show that this is always an improvement unless the trian-
gular inequality becomes an equality. This shows that E gives the maximal
violation of the monotonicity of the entropy. There are other measure-
ments for entanglement, e.g., the entanglement of distillation, (8) the Hilbert
Schmidt distance of a state from the set of separable states, (9) for other
possibilities see the reviews in refs. 10 and 11. But the entanglement of
formation is best related to the entropy.

The entanglement inequality turns out to be equivalent to the strong
subadditivity with respect to a suitable third party, the so called abelian
model. (7) Recently states for which the strong subadditivity becomes sharp
have been characterized. (12) In this situation also the entanglement inequal-
ity becomes sharp. Thus we can give examples in which the entanglement
inequality is sharp whereas the triangular inequality is not.

It is for us a pleasure to dedicate this note to E. H. Lieb, who gave
together with M. B. Ruskai (3, 4) the first proof of strong subadditivity.

2. THE ESTIMATES

We consider the tensor product of two finite dimensional full matrix
algebras M=A éB. The entanglement of formation of a state w over M
with respect to the subalgebra A is defined as

E(M,A, w)= inf
w=;Ni liwi

C
N

i
liS(wi,A)=E(M, B, w) (4)

where the decomposition is considered as decomposition into states over M
and S(wi,A) always means the entropy of the state wi considered as state
over A. By concavity of the entropy the infimum is reached for a decom-
position into pure states over M. For these states S(wi,A)=S(wi, B) and
guarantees therefore the above equality. In ref. 7 the notion of an abelian
model was introduced: if we have a decomposition w=;N

i liwi into N
states then we can take an abelian algebra C=(P1,..., PN) and can charac-
terize the decomposition of the state w by introducing a state L over
Mé C with L(Mé Pi)=liwi(M) so that L|M=w. Since with this charac-
terization there is a one-to-one correspondence between decompositions
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and abelian models we can express the entanglement of a subalgebra
A …M as infimum over abelian models

E(M,A, w)=inf
C, L
(S(L,A é C)−S(L, C)). (5)

Notice that this expression is \ 0, because the algebra C is abelian. It is
well defined for every subalgebra, but here we will mainly consider
M=A éB. Since we have to decompose into pure states over M to reach
the infimum (for finite dimensional matrices the infimum is in fact a
minimum by standard arguements on the simplex structure of state space)
the state L corresponds to a density matrix over HM éHC, namely to
r(L)=;N

i liQi é Pi where Pi, Qi are a set of one dimensional projections
in C resp. in M. The Qi are in general not orthogonal, but the Pi and
therefore also the Qi é Pi are. This implies that S(L,M é C)=S(L, C).
Furthermore L|M=w and S(L,M é C) \ S(L,M)=S(w,M), if L is a
decomposition into pure states over M. If L is the optimal decomposition
for E(M,A, w) we even have S(L,A é C) \ S(L,M é C), in flagrant
violation of monotonicity. Strong subadditivity tells us that

S(L,A éB é C)+S(L, C) [ S(L,A é C)+S(L, B é C). (6)

The separable states are those states that can be written as convex combi-
nation of tensor products, therefore those states for which E(M,A, w)
=0. In this situation the optimal decomposition is the one into states that
are also pure on A and B. Therefore we obtain

Lemma 1. If the state L describes an optimal decomposition with
respect to the entanglement of A then the inequality (6) becomes an
equality if and only if the state is separable.

Proof.

S(L,A éB é C)+S(L, C)

=2S(L, C) [ S(L,A é C)+S(L, B é C)

=E(A)+S(L, C)+E(B)+S(L, C). (7)

Thus equality holds iff E(A)=E(B)=0.
Strong subadditivity also offers another inequality, namely

S(L,A éB é C)+S(L, B) [ S(L,A éB)+S(L, B é C). (8)

Relation between Strong Subadditivity and Entanglement 1191



Therefore

Lemma 2. If the state is separable, then

S(w,A éB) \max(S(w, B), S(w,A)). (9)

Remark. Separable states are those states that are only classically
correlated, i.e., they can be written as convex combination of tensor pro-
ducts w=; i fiA é fiB. We see that they inherit the monotonicity of the
entropy in the classical theory.

Proof. (9) can be proven in several ways. Here we want to demon-
strate that it is also a consequence of strong subadditivity applied to an
appropriate choice of algebras. The combination of strong subadditivity
with respect to B and additivity with respect to C gives the desired result.
More explicitly, by (6) taken as equality according to Lemma (1) for the
optimal L, inserting it in the subadditivity inequality, we obtain

S(L,A éB é C)+S(L, B)

=S(L,A é C)−S(L, C)+S(L, B é C)+S(L, B)

[ S(L,A éB)+S(L, B é C) (10)

and thus reduces to the inequality (9) if we use monotonicity of the entropy
for an abelian algebra in the tensor product, i.e., S(L,A é C)−
S(L, C) \ 0. The same holds for AYB.

Remark. The converse is false. S may be monotonic even if w is
entangled. An example is given by the Werner states for A=B=M2.
With ra=

1
4 (1−asFA é sFB) the states are separable for − 13 [ a [

1
3 .

S(ra,A)=S(ra, B)=ln 2 whereas

S(ra)=−
1
4
(1+3a) ln

1+3a
4
−
3
4
(1−a) ln

1−a
4
=ln 2+

1
2
ln 3+”(E) > ln 2

if a=1
3+E and E is sufficiently small. For a=1 the state becomes pure,

S(r1)=0 and the inequality fails.
The optimal decomposition for which also S(L,M)=S(L, C) can be

used to sharpen the lower bound on the entropy of A éB also in the
general situation:
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Lemma 3 (Entanglement Inequality). The entropy satisfies

S(w,A éB) \H(B, w) — S(w, B)−E(A éB, B, w) (11)

and the same with AYB.

Proof. From the strong subadditivity we conclude for an optimal
decomposition L

S(L,A éB)=S(w,A éB) \ S(L, B)+S(L, C)−S(L, B é C)

=S(w, B)−E(A éB, B, w) —H(B, w). (12)

Lemma 4. Let w be a state over M=A éB. Then the following
properties are equivalent:

(i) w is pure or S(w,A)=0.

(ii) The triangular inequality S(w,A éB) \ S(w, B)−S(w,A)
becomes an equality.

(iii) The entanglement inequality

S(w,A éB) \H(A, w) — S(w,A)−E(A éB,A, w) (13)

is not a strict sharpening of the triangular inequality. (For any w it is at
least as good as the triangular inequality, because E [ S(B).)

Remark. We formulate the inequalities in one ordering. Of course in
the inequalities the algebras A and B can be exchanged. But it is possible
that the inequalities are sharp with respect to one ordering but not with
respect to the other.

Proof.

(i)Q (ii): For w pure this is a well known result of entropy theory.
Similarly w pure on A implies S(w,A éB)=S(w, B).

(ii)Q (i) : We consider a state w where S(w,A éB)=S(w, B)−
S(wA). But in general S(w,A éB) \ S(w, B)−E(A éB, B, w) and
also S(w,A) \ E(A éB, B, w) it follows that S(w,A)=E(A, w) This
holds only if the decomposition of w is not felt by A. This either happens
when w is pure or when S(w,A)=0, i.e., in (i).

(i)Y (iii): The entanglement inequality does not refine the triangular
inequality iff E(A, w)=S(w,A).
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Finally we consider, whether the class of states for which the entan-
glement inequality (11) becomes an equality is larger than the class of states
for which the triangular inequality is an equality. The former happens
when the strong subadditivity with respect to B becomes an equality. Here
we use the following result of ref. 12

Theorem. We consider the tensor product of three algebras,
A éB é C —ABC, not necessarily matrix algebras or abelian algebras.
For a state wABC corresponding to a density matrix rABC strong subaddi-
tivity becomes additivity

S(wABC)+S(wB)=S(wAB)+S(wBC) (14)

iff the Hilbert space HB on which B acts can be decomposed into a direct
tensor product

HB=Â
j

HbLj éHbRj (15)

such that

rABC=Â
j
qjrAbLj é rbRj C (16)

where rAbLj is a density matrix over the Hilbert space HA éHbLj and rbRj C is
a density matrix over the Hilbert space HbRj éHC and {qj} is a probability
distribution.

If we translate this condition to our special situation where C is
abelian and corresponds to a decomposition into pure states over A éB
then we write rbRj C=;N

i mijrbRj é Pi. Taking the expectation value with Pi it
follows that

Â
j
qjmijrAbLj é rbRj (17)

is a one dimensional projector. Therefore the sum must contain only one
term and mij must reduce to a Kronecker d and also the individual rAbLj and
rbRj must be one dimensional projectors. Therefore we can apply the above
theorem in

Lemma 5. The entanglement inequality becomes an equality for
H(B) if the density matrix over A éB can be written as

rA éB=C
j
qj :C

i
mijfij é kij87C

i
mijfij é kij : (18)
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where |fijP are normalized vectors in HA and |kijP -(ij) are orthonormal
vectors in HB.

In the situation of equality for the triangular inequality (Lemma 4(ii))
the condition reduces to the fact that either there is no summation over j
and in addition also the fij are orthonormal or that there is no summation
over i and all the fj are identical. Both are restrictions of the more general
situation in the lemma.

In the special example of A=M2, we have the following result: The
entanglement inequality (11) reduces to an equality only if w is pure on A
or pure on A éB or if w is separable, i.e., if r=lP1 é | ‘ PO ‘ |+
(1−l) P2 é | a PO a | with P1, P2 arbitrary one dimensional projectors in A.
Remember, that the algebras A and B can behave differently, when we
have formulated the entanglement inequality with respect to one.

If the entanglement inequality becomes an equality, we can make
another observation: in the non commutative case a replacement for the
monotonicity of the entropy is furnished by the conditional entropy.

Definition. Given a state w over an algebra M. Let A and B be
subalgebras of M. Then the conditional entropy of B with respect to A is
defined via the relative entropy S(r | s)=tr s(ln s− ln r) by

H(B |A)w=sup C
j
mj(S(w |wj)|B−S(w |wj)|A) \ 0

where the supremum is taken over all decompositions of w into states over
M, w=;j mjwj, and the lower bound ( \ 0)is obtained if the state is not
decomposed.

Remark. There is another definition for the conditional entropy,
namely S(rA éB)−S(rA). However, the conditional entropy in our defini-
tion is positive and can be understood as the gain of information that we
get from A if we already know B. It is defined in a larger context than for
tensor products, not trivially related to other expression and widely used in
the mathematical literature. (5) If all algebras are abelian (which we indicate
by the index 0) then for the tensor productH(B0 |A0)=H(A0 éB0 |A0)=
S(A0 éB0)−S(A0). In the non abelian situation we have the following
inequality as alternative to the subadditivity (it can be better, e.g., if w is
pure on A éB, but also worse, e.g., if A=B éB and w is the tracial
state):
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Lemma 6.

S(A éB) [H(A)+H(A éB |A). (19)

This follows from

supC
j
mj(S(w |wj)|A éB−S(w |wj)|A)+supC

j
mjS(w |wj)|A

\ supC
j
mj(S(w |wj)|A éB)=S(w,A éB). (20)

Of course it would be desirable to see some relation with H(B |A) instead
of H(A éB |A). But it is difficult to control the expression since neither
monotonicity between the algebras nor convexity properties can be applied.

In the special situation of

rA éB=C
j
qj :C

i
mijfij é kij87C

i
mijfij é kij : (21)

where strong subadditivity becomes equality we observe

S(w |wj)|B=S(w |wj)|A éB (22)

for any wj contributing to a decomposition. Therefore this equality
together with monotonicity A …A éB implies that for such w

H(A |B)=H(A |A éB)=0 (23)

H(B |A)=H(A éB |A)=S(A éB)−H(A). (24)

Though the entanglement inequality becomes an equality only with respect
to one subalgebra we have the equality

S(A éB)=H(A)+H(B |A)=H(B)+H(A |B). (25)

This covers the case where A is abelian, but again we have to notice that in
general equality will not hold. We have not succeeded to construct an
example with S(A éB) < H(A)+H(B |A) but we have found an
example with S(A éB) > H(A)+H(B |A). In this example we can
control H(B |A). Classically this is always \ 0 and=0 iff w restricted to
B is pure. In the quantum situation it is =0 again if restricted to B it is
pure, but also if restricted to A éB it is pure. But as we will see this does
not cover all possibilities, it can be =0 though B seems to contain
additional information.
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Example. Let A=M2, B=M2 with matrix units eij ¥A and
matrix units fij ¥B. Let w be given by the density matrix in A éB

r=a/2 |e1 é f1+e2 é f2POe1 é f1+e2 é f2 |

+(1−a) |e1 é f2POe1 é f2 |=a |k1POk1 |+(1−a) |k2POk2 |.

Reduced to A resp. B we have w(e11)=w(f22)=1−a/2, w(e12)=
w(f12)=0,w(e22)=w(f11)=a/2. Any state contributing to a decomposi-
tion of w has the form

s=a |k1POk1 |+b |k2POk2 |+c |k1POk2 |+cg |k2POk1 |.

Calculating its reduction to A resp. B we get again w(e11)=w(f22), w(e12)
=w(f21), so that S(s,A)=S(s, B). Therefore H(A |B)=H(B |A)=0.
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